




ww.materialpathwavs.

# Material Responsivity

## What?

Material responsivity is materials' capability to change one or more properties when impacted by a defined stimulus. Stimulus can e.g. be heat, electricity, chemicals, moisture, UV-light, pressure. The response manifests changes in a material's molecular structure due to higher or lower energy levels of the material.

## Why?

It is possible to program responsive materials to shift modus under specific conditions. It can thus lead to less material use by e.g. promoting multi-functionality. Furthermore, responsive materials support complex operations in products that are difficult to mechanically construct.

#### Challenges

- Materials might be expensive or require high levels of technological understanding.
- Materials might not be environmentally friendly due to e.g. material origin, technologies or chemicals used in production and material 'hybrids' might compromise recyclability.
- Sometimes responsive materials have more of a 'gimmicky' effect in products.

## Examples

- MIT's Self-Assembly Lab has developed an auxetic material that can automatically respond to changes in temperature by expanding at high temperature and contracting at low temperature.
- Marjan Kooroshnia has explored the design properties and potentials of colour-changing effects with leuco dye-based thermochromic inks when printed on textiles.

## This Card Links To

Material Biomimicry / Material Perception / Material Sensing / Material Speculation

## **Further Reading**

Tibbits (2017). Active Matter. MIT Press / Tiwari & Kobayashi (eds). (2014). Responsive materials and methods: state-of-the-art stimuli-responsive materials and their applications. Scrivener Publishing.